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Abstract

Analytical solution is given to the Duffing equation in its free response induced by the initial velocity. Maximum
deflection and acceleration are analyzed for its behavior in both hard and soft springs. The Duffing equation is derived
for the transient response of a laminated printed wiring board (PWB) as a hard spring system. Effect of the system
parameters on the nonlinear response is analyzed for the PWB. Results are generated to characterize the response
behavior with respect to the modal parameters and structure design of PWB. It is found that the maximum deflection is
almost linearly proportional to the initial velocity induced by the impact momentum.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic response of nonlinear system governed by the Duffing equation has been studied for different
initial and loading conditions. Analytical solutions have been derived for the system free response induced
by the initial deflection by Hsu (1960), as well as response under constant load by Suhir (1992, 1995).
Perurbation method and numerical computation has been used for the forced harmonic response (e.g. by
Stoker, 1950). The response induced by the initial velocity has not been completely derived in the known
literature (Davis, 1962).

In this study, analytical solution to the free response of the Duffing equation induced by the initial
velocity is obtained in the form of an elliptic function. Both hard and soft spring systems of the Duffing
equation are analyzed for its response characters. For the hard spring system, special application to the
transient response of a printed wiring board (PWB) made of symmetric isotropic laminates is studied. The
response induced by the initial velocity represents the impact reaction of a flatly dropped PWB with
constrained boundaries, e.g. simply supported. The initial velocity is induced from the momentum con-
servation. The PWB governing equation of motion is based on the nonlinear dynamics analysis of the
laminated composite in modal approach (He, 2000).
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2. Free response due to initial velocity

The solution to the transient response of the homogeneous Duffing equation in its modal analysis format

VV’"”()—’—wmnVVm"()—'—rm”VVrSn() 0 (1)
subjected to the condition of:
Wmn(o) =0, Wmn,t(o) = Vn(z)n (2)
can be assumed in the form of:
VO
Wy () = 22 sn(u, k)  with u = g,,¢ (3)
O-mn

Here the index m and n represent the two dimensional modal parameters, such as that used in the PWB
dynamics analysis for the deformation mode. The modal solution for the out-of-plane deformation of the
laminate is assumed as:

Wm,, X y, Z Z Wmn Sln (me) Sln(ﬁny) (4)
n=1 m=1
where
mT nm
m = T n = 3
ot )

Its free response magnitude #,,(¢) in large deflection is governed by Eq. (1).

The function sn(u, k) is the Jocobi elliptic function of the first kind, with module k. Here u and k are
associated with modal response. It should be referred to as u,, and k,,. For simplicity, the notion with m
and » are not used. In the sequel, the elliptic functions cn(u, k) and dn(u, k) will also occur.

Using the results of differentiation of Eq. (3), Eq. (1) can be expressed as:

—a* 1+ k> = 2K25n% (Gt k)] + @2, 0%, + P [ V2 s (u,£) = 0 (6)
from which the parameters of sn(u, k) function are found to satisfy:
2 2 2
0_2 — wgnn , k2 — _ r’""[Vrr(t)n] , k - _ r’""[Vrr?n] (7)
o1+ k? 204 1+ &2 20t
2.1. Hard spring, ¥, > 0
Define
rm”[Vl’V(I)n}z
7=\ 20 7>0 (8)
then
k
— i 9
< [+ k2) v ®
Let

. i .
k =ik hence <m> =1y (10)
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Here « is real, k is imaginary. It can be solved that:

K1:—1+2— ,V1+4V2>0, Kz:—l—z— ”yl+4y2<0 (11)
Kk, and k, satisfy:

Kiko=—1, orkfkpb=1. Asy—0, kK, >0, K, > —00 (12)
From Egs. (7) and (12):

A==l o om L o= o [L (13

Opn_1 = G\J/mg \VV1+42+1>0, areal constant (14a)

O = ia\)/mz_" \/v1+4y>—1, a purely imaginary constant (14b)

Omn_1> Omn_o has the following relations:

Omn_l = 1K20 2 = kZGmn_27 Omn_2 = 1K1O0pp_1 = kl Omn_1 (15)

The two solutions can be written as:

o |28
Van_l (t) = S}’l(O'm,,_lt, kl) == Sn(o-mn_lt, iKl) (16)
Omn_1 Omn_1
o yo .
Van_Z(t) = L Sn(o-mn_2t7 kZ) = o Sn(o-mn_Zta IKZ) (17)
Omn_2 Omn_2

Using Eq. (15) for o,,,_; and 6,,,2, Eq. (12) for k; and k,, from the following transformation (Bateman and
Erdelyi, 1955):

1
sn (kzu,k—> = kysn(u, ky) (18)
2

which holds for % either real or imaginary, the above two solutions are found identically the same for the
hard spring, i.e.

o 1
Van_l (t) = kzo"::,_z sn (kZO-mn_Ztak_2) = Van_Z(t) (19)

Since & is purely imaginary, as given by Eq. (12), the solution can be further simplified into the form of a
real function based on the transformation of (Bateman and Erdelyi, 1955):

. 1 K sn(u, x)
= 2 =
sn(u, iK) e sd (u\/ 1 + K2, T ;cz) where sd(u, k) dnlu, ) (20)
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Therefore, the solution for a hard spring can be expressed as:

yo 1
Wit (1) = = — s | g1+ 1530, — e (21)
Omn_1 1 + K% ! 1 + K%

v, k1 and g,,_; are defined in Eqgs. (8), (11) and (14a), respectively.

2.2. Soft spring, 1y, < 0

Let
B = Crmlll o ( k ):ﬁ (22)
20 1+ K2
Then
1+ \/1—74/32 1—/1—4p

ki = T, ky = T (23)
and

kiky =1 (24)

As f— 0, ky — oo, kp — 0. When 0 < f<1/2, k; and k, are real and positive. Otherwise, k; and k, are
complex. In this case, there are no available transformations for complex £ to yield an analytical solution in
real function.

For the case of real k; and k,, from Egs. (7) and (22):

2 2
» ) pw
_ mn___ mn 25
Im TR Tk @)
Then
Omn_1 = Wpp \ / k£i7 Omn_2 = a)mn\/g (26)
Dmn 2 WDmn 2
Omn_| = 1—4/1—-4p", Omn_o = 1+4/1—-4 27
1= B =5 B (27)
Both 6,,,_; and 6,,_, are real. From Egs. (25) and (27):
Omn_1 = kZO-mn_27 Omn_2 = kl Omn_1 (28)
Therefore,
VO
Wmn,l (t) = o Si’l(O’ant, kl) (29)
Omn_1
VO
Wmn_Z(t) = Gisn(o-mn_2ta kZ) (30)
mn_2

From the transformation Eq. (18), it can be verified that the two solutions are identical again, i.e.
Wmn_l (t) = I/an_Z(t) (31)
The parameters f3, k; and o,,_; for W,,_(¢) are given by Eqgs. (22), (23) and (26), respectively.
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3. Response characterization
By integrating Eq. (1), we obtain
W+ 500 Wy + W, = C (32)

for the given initial velocity in Eq. (2), then, Eq. (32) becomes:

V.Vrfn + wrznn VV/jn + %rmnnln?n = (Vﬂ(z)n)z (33)
Differentiate Eq. (1)
W ~+ 2 Wos + 370 Wi Woy = 0 (34)

Eqgs. (33) and (34) are to be used for characterizing the maximum response of the nonlinear system be-
havior..
At W, =0, Eq. (33) yields:

4 032 _ 2
wmn + 2}",,1,, ( an) a)mn

Whn_max = + (35)

mn_min

v, mn

Note that when r,,, = 0, representing linear system, the maximum deflection should be determined from the
linear analysis as:

VO
nh_max = wimn (36)

For the given maximum deflection of the nonlinear system, the acceleration can be determined from Eq. (1)
as:

_ 2 2 ( )
mn_max Wmn_min Bpun + Voun Wmn,min 37
mn_min mn_max mn_max

The above equation corresponds to the condition of W,,, = 0. This is because at W,,, = 0, Eq. (34) yields:
Won(@r, + 3FuWip,) =0 (38)

mn

for 7,, >0, Eq. (38) means W, =0 (39)

Therefore, for a hard spring, maximum acceleration and minimum deflection are obtained at the same time.
The maximum velocity for the hard spring can be obtained from Eq. (1). When W,,, = 0,

@2 Wy + T W =0 (40)

mn

since

@2 Wy + 1sWo # 0, then W, =0 (41)

From Eq. (33), this means that W,,,_n. = V2,
spring system.
For the maximum acceleration of the soft spring, at W, = 0, from Eq. (34):

Wyw =0 or (> +3r,W2)=0 (42)

mn

i.e. the initial velocity is the maximum velocity for the hard

there are three cases that can be identified.
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(a) W, =0, (@, + 3, W) #0 (43)

mn

It leads to the maximum deflection expressed in Eq. (35) and the maximum acceleration in Eq. (37). The
case is identical to the hard spring.

(b) Wnn 7é 0 and (wrznn + 3rm” Vann) = 0 (44)
1\ 172
w =t0u,| — 45
mom — < 3rmn> “3)
The maximum acceleration is determined from Eq. (1):
) 2 1 \'2
=+Z0 [ - 4
Wi =3 w’”( 3%) o

The magnitude of the response in cases (a) and (b) is compared and found that when

5

0 > a? [ 47
mn U)Inﬂ 18rmn ( )

The maximum deflection in case (a) is equal or higher than that in case (b), so does the acceleration.
(C) V‘an = 07 (a)fnn + 3rm” Wrr%n) = 0 (48)

From Egs. (33) and (45), at velocity W, = 0,

. 5 (o 2 5 (@
= :l: —_— __mn 0 = O 0 = T — 4
Van \/18 ( o ) + (an) ) an 18 < Viun > ( 9)

This means that the condition (c) is valid only at the particular initial velocity as given by Eq. (49). Oth-
erwise it would not occur. In case (¢), the acceleration is given the same as that in case (b). The response of
the soft spring is a combination of each case.

4. PWB response as a hard spring system

A simply supported laminated PWB is analyzed. Its out-of-plane motion is in the form of Eq. (4), with
boundary conditions:

up(0,,6) =0, wup(a,y,t) =0, vo(x,0,6) =0, wvo(x,b,6) =0, w(x,0,¢/)=0, w(x,b,t)=0,
w(0,,6) =0, w(a,y,t)=0 and N,(x,y,t) =0, F,(x,0,)=0 on all the boundaries. (50)

The governing equation for the PWB transient response has been derived based on the Von-Karman
nonlinear strain field for the large deflection in the Duffing equation, with the following coefficients (He,
2000):

1 342, — A2
o = _ 4A 2 2+ 11 12 4 JF 4 51
Fan = 17 120,,, i (o, + B,) (51)
2 2
2 _Duloy, +5,) (52)

mn [
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Fig. 1. PWB in isotropic laminate (length = 154 mm, width = 154 mm, height = 1.53 mm).

Table 1
Material properties of the PWB laminate
Layer Material Specific weight Young’s module Poission’s ratio Thickness
(g/cm?) (MPa) (mm)
1 Cu/FR-4 7.599 2.98 x 10* 0.205 0.030
2 FR-4 1.200 2.0 x 10* 0.190 0.200
3 Cu 8.310 1.18 x 10° 0.340 0.035
4 FR-4 1.200 2.0 x 10* 0.190 1.000
Table 2
Modal parameters for the Duffing equation
Mode Simple support
M N Omn (HZ) Vmn (mm72 572)
1 1 1588 1,246,924
1 2 3970 9,851,242
8 8 101,093 5,049,969,553
Function sd (u.k)
06}
)
E 04} !
~ 02 Illl
= \
-5 o0z 0004 ofooe of.cos  hor - L(S)
Q -02f
(D)
% -04 b
A -06f

Fig. 2. Mathematica deflection result with v}, = 1 m/s.

where I is the inertia of the system. The Duffing equation for PWB is a hard spring oscillator due to the
laminate stiffness and rigidity coefficients 4;; > 0, D;; > 0, hence r,,, > 0. A plastic PWB in symmetric lay-
up of isotropic laminates is shown in Fig. 1. It is made of copper and FR-4 laminae. Dimensions are
a x b =154 x 154 mm in length and width, total thickness is # = 1.53 mm. The material properties of each
lamina are given in Table 1. Some selective modal parameters for the Duffing equation are listed in Table 2.
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Fig. 3. Maximum deflection of hard spring with stiffness and frequency variation.

x10
6 T T T T T

N-—-5 B mode-11 '+ ¥
g mode-12 "™

£ ar mode-88 '<' ’
83r e ]
B —

ool Y .
B

Q

< L 4

O L Il 1 L 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
Frequency=1000~10,000 [Hz], v(0)=5 [mm/s]

-
2

E 10 mode-11 *+' e i
£ mode-12 ™ —

5 mode-88 '<' /,,/H*

5 —

o 5 — 1
B e

o

<

1 1 1 1 1
4000 5000 6000 7000 8000 9000 10,000
Frequency=1000~10,000 [Hz], v(0)=1 [m/s]

0 L L
1000 2000 3000

Fig. 4. Maximum acceleration of hard spring with stiffness and frequency variation.

The PWB response in the fundamental mode with initial velocity 9, =1 m/s is shown in Fig. 2. It is
generated from Mathematica for the solution expressed in Eq. (21).
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Maximum Deflection for Hard Spring--Velocity Effect
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Fig. 5. Maximum deflection for hard spring with initial velocity variation.

The PWB response character in relation to the parameter w,,, and r,,, can be studied from Egs. (35) and
(37). Plots of the maximum deflection and acceleration with respect to the frequency in the range of 1000—
10,000 Hz are shown in Figs. 3 and 4, respectively. The stiffness of each curve is chosen to be the modal
parameters listed in Table 2. The initial velocity chosen for the plot is 5 and 1000 mm/s, respectively, in the
two subplots as shown in each figure.

It is found that increased frequency reduces the maximum deflection. The maximum deflection at v, = 5
mm/s and frequency 1000 Hz is about 5 x 10(-* mm, while the maximum deflection at 1000 mm/s is about
0.83 mm. Also noted from Fig. 3 is that the three deflection curves with different stiffness converge at
v® =5 mm/s. This is an indication of the negligible effect of the stiffness to the deflection induced by the
initial velocity. The convergence is also observed for mode-11 and mode-12 at velocity t° = 1000 mm/s.
For mode-88, the deflection is significantly reduced to about 0.16 mm, and almost invariant with respect to
the frequency at higher initial velocity. Since higher frequency and stiffness are associated with higher
modes, the insignificant deflection of high mode and the decline of lower mode deflection curve with respect
to the frequency is consistent with the modal analysis results for the nonlinear system, i.e. higher modal
response yields deflection that can be neglected.

The acceleration increases with respect to the frequency linearly as seen in Fig. 4. Convergence of the
curves with different stiffness is also observed for different modes at both velocities. High acceleration is
observed for mode-88 at higher velocity of v, = 1000 mm/s, which makes it divert from the other curves.

The effect of the initial velocity t° on the maximum deflection and the acceleration is shown in Figs. 5
and 6, respectively. Distinction is noticed between curves with different stiffness and frequency. The pa-
rameters for the three curves are chosen as listed in Table 2. It is found that increased initial velocity, as of
the consequence of high momentum impact, leads to significant increase of deflection in the lower modes,
and has negligible effect for the higher mode. At ¢ = 1000 mm/s, the maximum deflection for the first
mode is about 0.63 mm, which agrees with that shown in Fig. 3. High initial velocity leads to higher ac-
celeration for the high modes. Almost linear variation of both deflection and acceleration with respect to
the initial velocity is observed.
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Fig. 6. Maximum acceleration of hard spring with initial velocity variation.
5. Discussion

The maximum deflection of the Duffing system given by Egs. (35) and (37) can be expressed, alterna-
tively, in series. From Eq. (35), the maximum deflection can be in the form of:

I\ 12 1/2

W n_max = i% (1 +W> -1 (53)
Define

O = % (54)

1/2

Voo = \(jﬁ (1 N (Z%,,)2>1/2 -1 (55)
From Eq. (37),

Womos _ W _ L G (56)

I/an_ min Wmn_ max

Eq. (56) indicates that both deflection and acceleration contains «,,, as a common factor. Based on Table 2,
it can be verified that o,, > 10°. Specifically, the ratios for different modes are:

oy = 2.5534e + 006, o = 1.2618e + 007, ogs = 1.0341e + 010 (57)

The magnitude in Eq. (57) means that frequency has a dominant effect on the response. The effect of «,,, on
the deflection can be accessed approximately by its series expression, i.e.
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4 ) e
= fom ] _ mn mn . 58
mn_mn Wpp 8t T Ton, 16“3;1:4 - ( )

It is seen that it contains the power series of the term (a,,,) . These terms are trivial based on Eq. (57). It is
significant only when high initial velocity is present, i.e. v, > 1 m/s. For ¢, <1 m/s, Eq. (61) can be ap-
proximated as:

VO
< +£0.96-m (59)

mn_max
mn_min leVl

Therefore, the deflection varies inversely with the frequency and almost linearly with the initial velocity,
which is supported by Figs. 3 and 5, respectively. This relationship exists on the condition of the ratio
defined by Eq. (57). Similar analysis for the acceleration from Eq. (37) yields,

0 \2
W = 0,967 o, (1 + o.%%) (60)

For the fundamental mode at v, <1 m/s, the response can be approximated as:

Wit_min = Viion (1+0.1907)°) (61)
For mode-12, the acceleration is:

Wio_min = Voo (14 0.038(78)°) = Koo (62)

Hence, the acceleration varies almost linearly with the frequency and the initial velocity for higher modes.
For the fundamental mode, this linear variation is a close approximation when the velocity is insignificant.
The linear variation assumes either that the stiffness is fixed, or the ratio a,, is in the range defined by Eq.
(57). It agrees with the results shown in Figs. 4 and 6, respectively.

It should be noted that frequency and stiffness of the Duffing equation in Eq. (54) are defined by the
material properties and the structure of the laminated PWB. The flexural rigidity of the laminate, D;;, and
the stiffness, 4,;, are given by:

k k
Ekhk VkEkhk
Ap=) —— 63
Z 12 l—vk Z 12(1 - v) BT (1 - w) (63)

Hence, material and the lamina thickness can be assessed for its effect on the system behavior. For example,
by using lamina with increased thickness, both 4;; and D;; can be increased. Alternatively, material with
higher E; can be used. Both approaches can increase the nonlinear system frequency w,,, and stiffness r,,,,, as
seen from Egs. (51) and (52). Therefore deflection can be reduced, hence reduced stresses caused by the
deflection.

6. Conclusion

Analytical solution is obtained for free response of the Duffing equation induced by the initial velocity.
The effect of the system parameters and the initial velocity on the maximum response is studied to char-
acterize the nonlinear system behavior. Hard spring system is analyzed for a PWB’s transient response. It is
found that for the given PWB parameter, stiffness r,,, is not sensitive to the maximum deflection induced by
the initial velocity. The increased system frequency leads to reduced deflection for both hard and soft
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springs in an inverse function. Deflection and acceleration are approximately linear function of the initial
velocity. Results suggest that the fundamental mode response for the PWB is essential.

Optimization of the PWB behavior can be made based on the analytical expression of the system pa-
rameters. The analytical result obtained can predict deflection; hence the stresses induced in the large de-
flection of the thin laminated PWB during impact. Deflection can be effectively reduced by adjusting the
material properties, structure thickness as well as the initial impact momentum.
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