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Abstract

Analytical solution is given to the Duffing equation in its free response induced by the initial velocity. Maximum

deflection and acceleration are analyzed for its behavior in both hard and soft springs. The Duffing equation is derived

for the transient response of a laminated printed wiring board (PWB) as a hard spring system. Effect of the system

parameters on the nonlinear response is analyzed for the PWB. Results are generated to characterize the response

behavior with respect to the modal parameters and structure design of PWB. It is found that the maximum deflection is

almost linearly proportional to the initial velocity induced by the impact momentum.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic response of nonlinear system governed by the Duffing equation has been studied for different

initial and loading conditions. Analytical solutions have been derived for the system free response induced

by the initial deflection by Hsu (1960), as well as response under constant load by Suhir (1992, 1995).

Perurbation method and numerical computation has been used for the forced harmonic response (e.g. by

Stoker, 1950). The response induced by the initial velocity has not been completely derived in the known

literature (Davis, 1962).

In this study, analytical solution to the free response of the Duffing equation induced by the initial

velocity is obtained in the form of an elliptic function. Both hard and soft spring systems of the Duffing
equation are analyzed for its response characters. For the hard spring system, special application to the

transient response of a printed wiring board (PWB) made of symmetric isotropic laminates is studied. The

response induced by the initial velocity represents the impact reaction of a flatly dropped PWB with

constrained boundaries, e.g. simply supported. The initial velocity is induced from the momentum con-

servation. The PWB governing equation of motion is based on the nonlinear dynamics analysis of the

laminated composite in modal approach (He, 2000).
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2. Free response due to initial velocity

The solution to the transient response of the homogeneous Duffing equation in its modal analysis format

€WWmnðtÞ þ x2
mnWmnðtÞ þ rmnW 3

mnðtÞ ¼ 0 ð1Þ
subjected to the condition of:

Wmnð0Þ ¼ 0; Wmn;tð0Þ ¼ V 0
mn ð2Þ

can be assumed in the form of:

WmnðtÞ ¼
V 0
mn

rmn
snðu; kÞ with u ¼ rmnt ð3Þ

Here the index m and n represent the two dimensional modal parameters, such as that used in the PWB

dynamics analysis for the deformation mode. The modal solution for the out-of-plane deformation of the

laminate is assumed as:

wmnðx; y; tÞ ¼
X1
n¼1

X1
m¼1

WmnðtÞ sinðamxÞ sinðbnyÞ ð4Þ

where

am ¼ mp
a

; bn ¼
np
b

ð5Þ

Its free response magnitude WmnðtÞ in large deflection is governed by Eq. (1).

The function snðu; kÞ is the Jocobi elliptic function of the first kind, with module k. Here u and k are

associated with modal response. It should be referred to as umn and kmn. For simplicity, the notion with m
and n are not used. In the sequel, the elliptic functions cnðu; kÞ and dnðu; kÞ will also occur.

Using the results of differentiation of Eq. (3), Eq. (1) can be expressed as:

�r4
mn½1þ k2 � 2k2sn2ðrmnt; kÞ� þ x2

mnr
2
mn þ rmn½V 0

mn�
2sn2ðu; tÞ ¼ 0 ð6Þ

from which the parameters of snðu; kÞ function are found to satisfy:

r2
mn ¼

x2
mn

1þ k2
; k2 ¼ � rmn½V 0

mn�
2

2r4
mn

;
k

1þ k2

� �2

¼ � rmn½V 0
mn�

2

2x4
mn

ð7Þ

2.1. Hard spring, rmn > 0

Define

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmn½V 0

mn�
2

2x4
mn

s
; c > 0 ð8Þ

then

k
1þ k2

� �
¼ ic ð9Þ

Let

k ¼ ij hence
ij

1� j2

� �
¼ ic ð10Þ
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Here j is real, k is imaginary. It can be solved that:

j1 ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
2c

> 0; j2 ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
2c

< 0 ð11Þ

j1 and j2 satisfy:

j1j2 ¼ �1; or k1k2 ¼ 1: As c ! 0; j1 ! 0; j2 ! �1 ð12Þ

From Eqs. (7) and (12):

r2
mn ¼

x2
mn

1� j2
¼ cx2

mn

j
; rmn 1 ¼ xmn

ffiffiffiffiffi
c
j1

r
; rmn 2 ¼ xmn

ffiffiffiffiffi
c
j2

r
ð13Þ

rmn 1 ¼
xmnffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
þ 1

q
> 0; a real constant ð14aÞ

rmn 2 ¼ i
xmnffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
� 1

q
; a purely imaginary constant ð14bÞ

rmn 1, rmn 2 has the following relations:

rmn 1 ¼ ij2rmn 2 ¼ k2rmn 2; rmn 2 ¼ ij1rmn 1 ¼ k1rmn 1 ð15Þ

The two solutions can be written as:

Wmn 1ðtÞ ¼
V 0
mn

rmn 1

snðrmn 1t; k1Þ ¼
V 0
mn

rmn 1

snðrmn 1t; ij1Þ ð16Þ

Wmn 2ðtÞ ¼
V 0
mn

rmn 2

snðrmn 2t; k2Þ ¼
V 0
mn

rmn 2

snðrmn 2t; ij2Þ ð17Þ

Using Eq. (15) for rmn 1 and rmn 2, Eq. (12) for k1 and k2, from the following transformation (Bateman and

Erdelyi, 1955):

sn k2u;
1

k2

� �
¼ k2snðu; k2Þ ð18Þ

which holds for k either real or imaginary, the above two solutions are found identically the same for the

hard spring, i.e.

Wmn 1ðtÞ ¼
V 0
mn

k2rmn 2

sn k2rmn 2t;
1

k2

� �
¼ Wmn 2ðtÞ ð19Þ

Since k is purely imaginary, as given by Eq. (12), the solution can be further simplified into the form of a

real function based on the transformation of (Bateman and Erdelyi, 1955):

snðu; ijÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p sd u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
;

jffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� �

where sdðu; jÞ ¼ snðu; jÞ
dnðu; jÞ ð20Þ
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Therefore, the solution for a hard spring can be expressed as:

Wmn 1ðtÞ ¼
V 0
mn

rmn 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

1

p sd u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

1

q
t;

j1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

1

p
 !

ð21Þ

c, j1 and rmn 1 are defined in Eqs. (8), (11) and (14a), respectively.

2.2. Soft spring, rmn < 0

Let

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� rmn½V 0

mn�
2

2x4
mn

s
> 0 and

k
1þ k2

� �
¼ b ð22Þ

Then

k1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b2

q
2b

; k2 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b2

q
2b

ð23Þ

and

k1k2 ¼ 1 ð24Þ
As b ! 0, k1 ! 1, k2 ! 0. When 0 < b6 1=2, k1 and k2 are real and positive. Otherwise, k1 and k2 are

complex. In this case, there are no available transformations for complex k to yield an analytical solution in

real function.

For the case of real k1 and k2, from Eqs. (7) and (22):

r2
mn ¼

x2
mn

1þ k2
¼ bx2

mn

k
ð25Þ

Then

rmn 1 ¼ xmn

ffiffiffiffi
b
k1

s
; rmn 2 ¼ xmn

ffiffiffiffi
b
k2

s
ð26Þ

rmn 1 ¼
xmnffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b2

qr
; rmn 2 ¼

xmnffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b2

qr
ð27Þ

Both rmn 1 and rmn 2 are real. From Eqs. (25) and (27):

rmn 1 ¼ k2rmn 2; rmn 2 ¼ k1rmn 1 ð28Þ
Therefore,

Wmn 1ðtÞ ¼
V 0
mn

rmn 1

snðrmn 1t; k1Þ ð29Þ

Wmn 2ðtÞ ¼
V 0
mn

rmn 2

snðrmn 2t; k2Þ ð30Þ

From the transformation Eq. (18), it can be verified that the two solutions are identical again, i.e.

Wmn 1ðtÞ ¼ Wmn 2ðtÞ ð31Þ
The parameters b, k1 and rmn 1 for Wmn 1ðtÞ are given by Eqs. (22), (23) and (26), respectively.
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3. Response characterization

By integrating Eq. (1), we obtain

1
2
_WW 2
mn þ 1

2
x2

mnW
2
mn þ 1

4
rmnW 4

mn ¼ C ð32Þ

for the given initial velocity in Eq. (2), then, Eq. (32) becomes:

_WW 2
mn þ x2

mnW
2
mn þ 1

2
rmnW 4

mn ¼ ðV 0
mnÞ

2 ð33Þ

Differentiate Eq. (1)

W
...

mn þ x2
mn

_WWmn þ 3rmnW 2
mn

_WWmn ¼ 0 ð34Þ

Eqs. (33) and (34) are to be used for characterizing the maximum response of the nonlinear system be-

havior.

At _WWmn ¼ 0, Eq. (33) yields:

Wmn max
mn min

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4

mn þ 2rmnðV 0
mnÞ

2
q

� x2
mn

rmn

vuut
ð35Þ

Note that when rmn ¼ 0, representing linear system, the maximum deflection should be determined from the

linear analysis as:

W L
mn max ¼

V 0
mn

xmn
ð36Þ

For the given maximum deflection of the nonlinear system, the acceleration can be determined from Eq. (1)

as:

€WW
mn max
mn min

¼ �W
mn min
mn max

x2
mn

0
B@ þ rmnW 2

mn min
mn max

1
CA ð37Þ

The above equation corresponds to the condition of W
...

mn ¼ 0. This is because at W
...

mn ¼ 0, Eq. (34) yields:

_WWmnðx2
mn þ 3rmnW 2

mnÞ ¼ 0 ð38Þ

for rmn > 0; Eq: ð38Þ means _WWmn ¼ 0 ð39Þ
Therefore, for a hard spring, maximum acceleration and minimum deflection are obtained at the same time.

The maximum velocity for the hard spring can be obtained from Eq. (1). When €WWmn ¼ 0,

x2
mnWmn þ rmnW 3

mn ¼ 0 ð40Þ

since

x2
mnWmn þ rmnW 3

mn 6¼ 0; then Wmn ¼ 0 ð41Þ

From Eq. (33), this means that _WWmn max ¼ V 0
mn, i.e. the initial velocity is the maximum velocity for the hard

spring system.

For the maximum acceleration of the soft spring, at W
...

mn ¼ 0, from Eq. (34):

_WWmn ¼ 0 or ðx2
mn þ 3rmnW 2

mnÞ ¼ 0 ð42Þ

there are three cases that can be identified.
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ðaÞ _WWmn ¼ 0; ðx2
mn þ 3rmnW 2

mnÞ 6¼ 0 ð43Þ
It leads to the maximum deflection expressed in Eq. (35) and the maximum acceleration in Eq. (37). The

case is identical to the hard spring.

ðbÞ _WWmn 6¼ 0 and ðx2
mn þ 3rmnW 2

mnÞ ¼ 0 ð44Þ

W
mn max
mn min

¼ �xmn

�
� 1

3rmn

�1=2

ð45Þ

The maximum acceleration is determined from Eq. (1):

€WW
mn max
mn min

¼ � 2

3
x3

mn

�
� 1

3rmn

�1=2

ð46Þ

The magnitude of the response in cases (a) and (b) is compared and found that when

V 0
mn P x2

mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 5

18rmn

s
ð47Þ

The maximum deflection in case (a) is equal or higher than that in case (b), so does the acceleration.

ðcÞ _WWmn ¼ 0; ðx2
mn þ 3rmnW 2

mnÞ ¼ 0 ð48Þ

From Eqs. (33) and (45), at velocity _WWmn ¼ 0,

_WWmn ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

18

x4
mn

rmn

� �
þ ðV 0

mnÞ
2

s
¼ 0; V 0

mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 5

18

x4
mn

rmn

� �s
ð49Þ

This means that the condition (c) is valid only at the particular initial velocity as given by Eq. (49). Oth-

erwise it would not occur. In case (c), the acceleration is given the same as that in case (b). The response of

the soft spring is a combination of each case.

4. PWB response as a hard spring system

A simply supported laminated PWB is analyzed. Its out-of-plane motion is in the form of Eq. (4), with

boundary conditions:

u0ð0; y; tÞ ¼ 0; u0ða; y; tÞ ¼ 0; v0ðx; 0; tÞ ¼ 0; v0ðx; b; tÞ ¼ 0; wðx; 0; tÞ ¼ 0; wðx; b; tÞ ¼ 0;

wð0; y; tÞ ¼ 0; wða; y; tÞ ¼ 0 and Nxyðx; y; tÞ ¼ 0; F;xyðx; 0; tÞ ¼ 0 on all the boundaries: ð50Þ

The governing equation for the PWB transient response has been derived based on the Von-Karman

nonlinear strain field for the large deflection in the Duffing equation, with the following coefficients (He,

2000):

rmn ¼
1

16~II
4A12a

2
mb2

n

�
þ 3A2

11 � A2
12

A11

ða4
m þ b4

nÞ
�

ð51Þ

x2
mn ¼

D11ba2
m þ b2

nc
~II

ð52Þ
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where ~II is the inertia of the system. The Duffing equation for PWB is a hard spring oscillator due to the

laminate stiffness and rigidity coefficients Aij > 0, Dij > 0, hence rmn > 0. A plastic PWB in symmetric lay-

up of isotropic laminates is shown in Fig. 1. It is made of copper and FR-4 laminae. Dimensions are

a� b ¼ 154� 154 mm in length and width, total thickness is h ¼ 1:53 mm. The material properties of each

lamina are given in Table 1. Some selective modal parameters for the Duffing equation are listed in Table 2.

Fig. 1. PWB in isotropic laminate (length ¼ 154 mm, width ¼ 154 mm, height ¼ 1:53 mm).

Table 1

Material properties of the PWB laminate

Layer Material Specific weight

(g/cm3)

Young�s module

(MPa)

Poission�s ratio Thickness

(mm)

1 Cu/FR-4 7.599 2:98� 104 0.205 0.030

2 FR-4 1.200 2:0� 104 0.190 0.200

3 Cu 8.310 1:18� 105 0.340 0.035

4 FR-4 1.200 2:0� 104 0.190 1.000

Table 2

Modal parameters for the Duffing equation

Mode Simple support

M N xmn (Hz) rmn (mm�2 s�2)

1 1 1588 1,246,924

1 2 3970 9,851,242

8 8 101,093 5,049,969,553

Fig. 2. Mathematica deflection result with v011 ¼ 1 m/s.
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The PWB response in the fundamental mode with initial velocity v011 ¼ 1 m/s is shown in Fig. 2. It is

generated from Mathematica for the solution expressed in Eq. (21).

Fig. 3. Maximum deflection of hard spring with stiffness and frequency variation.

Fig. 4. Maximum acceleration of hard spring with stiffness and frequency variation.
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The PWB response character in relation to the parameter xmn and rmn can be studied from Eqs. (35) and

(37). Plots of the maximum deflection and acceleration with respect to the frequency in the range of 1000–
10,000 Hz are shown in Figs. 3 and 4, respectively. The stiffness of each curve is chosen to be the modal

parameters listed in Table 2. The initial velocity chosen for the plot is 5 and 1000 mm/s, respectively, in the

two subplots as shown in each figure.

It is found that increased frequency reduces the maximum deflection. The maximum deflection at v0mn ¼ 5

mm/s and frequency 1000 Hz is about 5� 10ð�3Þ mm, while the maximum deflection at 1000 mm/s is about

0.83 mm. Also noted from Fig. 3 is that the three deflection curves with different stiffness converge at

v0mn ¼ 5 mm/s. This is an indication of the negligible effect of the stiffness to the deflection induced by the

initial velocity. The convergence is also observed for mode-11 and mode-12 at velocity v0mn ¼ 1000 mm/s.
For mode-88, the deflection is significantly reduced to about 0.16 mm, and almost invariant with respect to

the frequency at higher initial velocity. Since higher frequency and stiffness are associated with higher

modes, the insignificant deflection of high mode and the decline of lower mode deflection curve with respect

to the frequency is consistent with the modal analysis results for the nonlinear system, i.e. higher modal

response yields deflection that can be neglected.

The acceleration increases with respect to the frequency linearly as seen in Fig. 4. Convergence of the

curves with different stiffness is also observed for different modes at both velocities. High acceleration is

observed for mode-88 at higher velocity of v0mn ¼ 1000 mm/s, which makes it divert from the other curves.
The effect of the initial velocity v0mn on the maximum deflection and the acceleration is shown in Figs. 5

and 6, respectively. Distinction is noticed between curves with different stiffness and frequency. The pa-

rameters for the three curves are chosen as listed in Table 2. It is found that increased initial velocity, as of

the consequence of high momentum impact, leads to significant increase of deflection in the lower modes,

and has negligible effect for the higher mode. At v0mn ¼ 1000 mm/s, the maximum deflection for the first

mode is about 0.63 mm, which agrees with that shown in Fig. 3. High initial velocity leads to higher ac-

celeration for the high modes. Almost linear variation of both deflection and acceleration with respect to

the initial velocity is observed.

Fig. 5. Maximum deflection for hard spring with initial velocity variation.

X. He, M. Stallybrass / International Journal of Solids and Structures 39 (2002) 5979–5990 5987



5. Discussion

The maximum deflection of the Duffing system given by Eqs. (35) and (37) can be expressed, alterna-

tively, in series. From Eq. (35), the maximum deflection can be in the form of:

W
mn max
mn min

¼ � xmnffiffiffiffiffiffi
rmn

p 1

 24 þ 2rmnðV 0
mnÞ

2

x4
mn

!1=2

� 1

3
5

1=2

ð53Þ

Define

amn ¼
x4

mn

2rmn
ð54Þ

W
mn max
mn min

¼ � xmnffiffiffiffiffiffi
rmn

p 1

 24 þ ðV 0
mnÞ

2

amn

!1=2

� 1

3
5

1=2

ð55Þ

From Eq. (37),

€WWmn max

Wmn min

¼
€WWmn min

Wmn max

¼ �ðx2
mn þ rmnW 2

mn maxÞ ð56Þ

Eq. (56) indicates that both deflection and acceleration contains amn as a common factor. Based on Table 2,

it can be verified that amn > 106. Specifically, the ratios for different modes are:

a11 ¼ 2:5534eþ 006; a12 ¼ 1:2618eþ 007; a88 ¼ 1:0341eþ 010 ð57Þ

The magnitude in Eq. (57) means that frequency has a dominant effect on the response. The effect of amn on
the deflection can be accessed approximately by its series expression, i.e.

Fig. 6. Maximum acceleration of hard spring with initial velocity variation.
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W
mn max
mn min

¼ � V 0
mn

xmn
1

"
� ðV 0

mnÞ
2

8amn
þ ðV 0

mnÞ
4

16a2
mn

þ � � �
#

ð58Þ

It is seen that it contains the power series of the term ðamnÞ�1
. These terms are trivial based on Eq. (57). It is

significant only when high initial velocity is present, i.e. v011 > 1 m/s. For v011 6 1 m/s, Eq. (61) can be ap-

proximated as:

W
mn max
mn min

6 � 0:96
V 0
mn

xmn
ð59Þ

Therefore, the deflection varies inversely with the frequency and almost linearly with the initial velocity,

which is supported by Figs. 3 and 5, respectively. This relationship exists on the condition of the ratio
defined by Eq. (57). Similar analysis for the acceleration from Eq. (37) yields,

€WWmn min ffi 0:96V 0
mnxmn 1

 
þ 0:96

ðV 0
mnÞ

2

2amn

!
ð60Þ

For the fundamental mode at v011 6 1 m/s, the response can be approximated as:

€WW11 min ¼ V 0
11x11 1

�
þ 0:19ðV 0

11Þ
2
�

ð61Þ

For mode-12, the acceleration is:

€WW12 min ¼ V 0
12x12 1

�
þ 0:038ðV 0

12Þ
2
�
ffi V 0

12x12 ð62Þ

Hence, the acceleration varies almost linearly with the frequency and the initial velocity for higher modes.

For the fundamental mode, this linear variation is a close approximation when the velocity is insignificant.

The linear variation assumes either that the stiffness is fixed, or the ratio amn is in the range defined by Eq.

(57). It agrees with the results shown in Figs. 4 and 6, respectively.

It should be noted that frequency and stiffness of the Duffing equation in Eq. (54) are defined by the
material properties and the structure of the laminated PWB. The flexural rigidity of the laminate, D11, and

the stiffness, A11, are given by:

D11 ¼
Xk
n¼1

Ekh3
k

12ð1� mkÞ
; A11 ¼

Xk
n¼1

Ekhk
12ð1� mkÞ

; A12 ¼
Xk
n¼1

mkEkhk
12ð1� mkÞ

ð63Þ

Hence, material and the lamina thickness can be assessed for its effect on the system behavior. For example,

by using lamina with increased thickness, both A11 and D11 can be increased. Alternatively, material with
higher Ek can be used. Both approaches can increase the nonlinear system frequency xmn and stiffness rmn, as
seen from Eqs. (51) and (52). Therefore deflection can be reduced, hence reduced stresses caused by the

deflection.

6. Conclusion

Analytical solution is obtained for free response of the Duffing equation induced by the initial velocity.

The effect of the system parameters and the initial velocity on the maximum response is studied to char-

acterize the nonlinear system behavior. Hard spring system is analyzed for a PWB�s transient response. It is
found that for the given PWB parameter, stiffness rmn is not sensitive to the maximum deflection induced by

the initial velocity. The increased system frequency leads to reduced deflection for both hard and soft
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springs in an inverse function. Deflection and acceleration are approximately linear function of the initial

velocity. Results suggest that the fundamental mode response for the PWB is essential.

Optimization of the PWB behavior can be made based on the analytical expression of the system pa-

rameters. The analytical result obtained can predict deflection; hence the stresses induced in the large de-
flection of the thin laminated PWB during impact. Deflection can be effectively reduced by adjusting the

material properties, structure thickness as well as the initial impact momentum.
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